A Digital DNA Sequencing Engine for Ransomware Detection Using Machine Learning
نویسندگان
چکیده
منابع مشابه
A Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملExtinguishing Ransomware - A Hybrid Approach to Android Ransomware Detection
Mobile ransomware is on the rise and effective defense from it is of utmost importance to guarantee security of mobile users’ data. Current solutions provided by antimalware vendors are signature-based and thus ineffective in removing ransomware and restoring the infected devices and files. Also, current state-of-the art literature offers very few solutions to effectively detecting and blocking...
متن کاملUsing machine learning for defect detection
In this paper we present an approach to defect detection in images based on machine learning algorithms. A qualitative model of defect has been devised based on human experience. A set of vision primitives measuring defect features has been deened. Objects in images candidate to be classiied as defects are submitted to automatic classiication, which is achieved with learning by examples algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3003785